A First Course in the Differential And Integral Calculus
A First Course in the Differential And Integral Calculus
William F William Fogg Osgood
The book A First Course in the Differential And Integral Calculus was written by author William F William Fogg Osgood Here you can read free online of A First Course in the Differential And Integral Calculus book, rate and share your impressions in comments. If you don't know what to write, just answer the question: Why is A First Course in the Differential And Integral Calculus a good or bad book?
What reading level is A First Course in the Differential And Integral Calculus book?
To quickly assess the difficulty of the text, read a short excerpt:
Hence (2) k=±—, or better: K = \ — w ds Ids From the foregoing definition we see that the curvature is the rate at which the tangent turns when a point describes the curve wifh unit velocity. To compute dr/ds we have (3) tanr = ^ or r = tan" 1 ^. dx dx It will be convenient to introduce a shorter notation for deriva- tives and we shall adopt Lagrange's, which employs accents : y *=/(?), It follows, then, that dy' = ( &dx = ( ^ ) dx = y"dx dx dx 2 and ds = Vdx 2 -f dy 2 = VI -\-y' 2 dx. Returnin...g to (3) and differentiating we have: 136 CALCULUS r-taa-V, ^=«^ = fJE dr ds i+y' 2 i+y' 2) . '/ (l+y, 2 P (4) I y" I (1+2/' 2 ) [ ♦*r The reciprocal of the curvature is called the radius of curva- ture and is usually denoted by p : * l__ (l+y") f L dtf \y"\ " (?) /> = K = dx 2 ; The radius of curvature of a circle is its radius. The curva- ture of a curve at a point of inflection is in general ; for y" = at such a point if y" is continuous there. Example. To find the curvature of the parabola f 2mx.
User Reviews: