The Similarity Between Shapes Under Affine Transformation

Cover The Similarity Between Shapes Under Affine Transformation
The Similarity Between Shapes Under Affine Transformation
J Hong
The book The Similarity Between Shapes Under Affine Transformation was written by author Here you can read free online of The Similarity Between Shapes Under Affine Transformation book, rate and share your impressions in comments. If you don't know what to write, just answer the question: Why is The Similarity Between Shapes Under Affine Transformation a good or bad book?
Where can I read The Similarity Between Shapes Under Affine Transformation for free?
In our eReader you can find the full English version of the book. Read The Similarity Between Shapes Under Affine Transformation Online - link to read the book on full screen. Our eReader also allows you to upload and read Pdf, Txt, ePub and fb2 books. In the Mini eReder on the page below you can quickly view all pages of the book - Read Book The Similarity Between Shapes Under Affine Transformation
What reading level is The Similarity Between Shapes Under Affine Transformation book?
To quickly assess the difficulty of the text, read a short excerpt:

Then we need — steps.
In fact, we can make use of the property |^(ri)-(r2) |^Z, |ri — r2 1 still further. As illustrated in Fig. 2, we draw line S of slope —L through point (a, ^(a)) and a line T through point (fe, (fe)). These two lines intersect at point (u, v). The Lipsiz condition guarantees that if a^x^b then (x)^v. It is easy to show that v=(^(a) + ^(b))/2-Lib-a)/2, therefore ^(x)^i^{a) + ^(b))/2-Lib-a)/2 '^(X) Based on this fact, we will try to skip as many computations as we can.
N
...ow we divide our computation into phases. At phase i, we compute (r) for all values of 2A:, ir. It, = 1/2', 3/2', 5/2'' (2'-l)/2'.
In other words.
Phase 0: Jto=l; Phase 1; iti=l/2; Phase 2: it2 = l/4, 3/4; Phase 3: A3 = 1 /8, 3/8, 5/8. 7/«.
Assume that we have finished phase i and m is the minimum value of $ that we have ever found. By the reason mentioned above, we can easily see that if an inter- val [;72', (; + l)/2'] has the property that (cI)(;72') + :/n Then we can guarantee that no points in this internal can have a lower value than m, therefore we can remove all these kinds of intervals.


What to read after The Similarity Between Shapes Under Affine Transformation?
You can find similar books in the "Read Also" column, or choose other free books by J Hong to read online
MoreLess

Read book The Similarity Between Shapes Under Affine Transformation for free

Ads Skip 5 sec Skip
+Write review

User Reviews:

Write Review:

Guest

Guest